Phase space behavior of Laplace Eigenfunctions

Abraham Rabinowitz

October 5, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Overview of of the talk

- What are eigenfunctions and how do they help model physical processes on surfaces?
- What did I contribute to our understanding of eigenfunctions?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Second derivative operator

Operator $\frac{d^2}{dx^2}$ takes function f to second derivative

$$\left(\frac{d^2}{dx^2}f\right)(x) = f''(x)$$

Second derivative operator

Operator $\frac{d^2}{dx^2}$ takes function f to second derivative

$$\left(\frac{d^2}{dx^2}f\right)(x) = f''(x)$$

f''(x) says to what "degree" x is a minima

E 990

 $\frac{d^2}{dx^2}$ is ubiquitous in physical modeling

Heat Diffusion

 $\boldsymbol{u}(\boldsymbol{x},t)$ is the temperature at \boldsymbol{x} at time t and evolves according to

$$\frac{\partial}{\partial t}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$$

э

 $\frac{d^2}{dx^2}$ is ubiquitous in physical modeling

Wave Propagation

 $\boldsymbol{u}(\boldsymbol{x},t)$ is the height of a wave at \boldsymbol{x} at time t and evolves according to

$$\frac{\partial^2}{\partial t^2}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t)$$

Focus on probability distribution of location of quantum particle

Quantum Particle

 $|\boldsymbol{u}(\boldsymbol{x},t)|^2$ is the probability distribution of locating a particle at position \boldsymbol{x} and time t which evolves according to

$$i\frac{\partial}{\partial t}u(x,t) = -\frac{\partial^2}{\partial x^2}u(x,t)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• *Eigenfunctions* generalize eigenvectors. Help solve differential equations.

Eigenvectors of matrices

M is an $n\times n$ matrix, v is an $n\times 1$ vector and λ is a real number

 $Mv = \lambda v$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

• v is called a *eigenvector* with *eigenvalue* λ

Eigenvectors of matrices

M is an $n\times n$ matrix, v is an $n\times 1$ vector and λ is a real number

 $Mv = \lambda v$

• v is called a *eigenvector* with *eigenvalue* λ

Eigenvectors identify "principal directions"

Eigenfunctions of $\frac{d^2}{dx^2}$

We replace M with $\frac{d^2}{dx^2}$ and v with a function $\varphi_\lambda(x)$

$$\frac{d^2}{dx^2}\varphi_{\lambda} = \lambda\varphi_{\lambda}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• φ_{λ} is called an *eigenfunction* with *eigenvalue* λ

$$\left(-\frac{d^2}{d^2x}\right)\varphi_{\lambda} = \lambda\varphi_{\lambda}, \quad \varphi_{\lambda} = e^{i\sqrt{\lambda}x}, \quad \sqrt{\lambda} = \text{ frequency}$$

Goal: Modeling physical phenomena on surfaces more complicated than a line

• Given a surface S, the Laplacian denoted by Δ_S plays the role of $\frac{d^2}{dx^2}.$

The Laplacian

 $(\Delta_S f)(x)$ describes the degree to which x is a minima of f on the surface S

Eigenfunctions of Δ_{S}

Given a surface S , we study eigenfunctions of Δ_S

 $\Delta_S \varphi_\lambda = \lambda \varphi_\lambda$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

• φ_{λ} is called a Laplace eigenfunction with eigenvalue λ

Eigenfunctions of Δ_{S}

Given a surface S , we study eigenfunctions of Δ_S

 $\Delta_S \varphi_\lambda = \lambda \varphi_\lambda$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

• φ_{λ} is called a Laplace eigenfunction with eigenvalue λ

▶ N.B. On a surface S, λ are discrete!

Laplace eigenfunctions on the circle ${\cal S}^1$ are sinusoids

$$\Delta_{S^1}\varphi_{n^2} = n^2\varphi_{n^2}, \quad \varphi_{n^2}(\theta) = e^{in\theta}$$

Visualizations of Laplace eigenfunctions on the sphere, S^2

$$\Delta_{S^2}\varphi_\lambda = \lambda\varphi_\lambda$$

Red = Positive, Blue = Negative, White = Negligible(Zero)

How Laplace Eigenfunctions help model quantum particles on surfaces

Theorem

Any function $f,\,{\rm on}$ the surface S is a superposition of Laplace eigenfunctions.

$$f(x) = \sum_{i=1}^{\infty} c_i \varphi_{\lambda_i}(x)$$

How Laplace Eigenfunctions help model quantum particles on surfaces

Quantum Particle on S

 $|u(x,t)|^2$ probability distribution of locating a particle at position x and time t. Its wavefunction u(x,t) evolves by

$$i\frac{\partial}{\partial t}u(x,t) = -\Delta_S u(x,t)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

How Laplace Eigenfunctions help model quantum particles on surfaces

Quantum Particle on S

 $|u(x,t)|^2$ probability distribution of locating a particle at position x and time t. Its wavefunction u(x,t) evolves by

$$i\frac{\partial}{\partial t}u(x,t) = -\Delta_S u(x,t)$$

Wavefunction u(x,t) written as sum of Laplace eigenfunctions φ_{λ}

$$u(x,t) = \sum_{i=1}^{\infty} c_i e^{i\lambda_i t} \varphi_{\lambda_i}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• u a wavefunction. $|u(x)|^2$ a probability distribution of **location**.

・ロト・日本・ヨト・ヨト・日・ つへぐ

- u a wavefunction. $|u(x)|^2$ a probability distribution of **location**.
- \blacktriangleright When S is a line we take u 's Fourier Transform

$$\hat{u}(\xi) = \int_{\mathbf{R}} e^{-ix\cdot\xi} u(x) dx$$

・ロト・日本・ヨト・ヨト・日・ つへぐ

- u a wavefunction. $|u(x)|^2$ a probability distribution of **location**.
- \blacktriangleright When S is a line we take u 's Fourier Transform

$$\hat{u}(\xi) = \int_{\mathbf{R}} e^{-ix\cdot\xi} u(x) dx$$

• $|\hat{u}(\xi)|^2$ a probability distribution of **direction**.

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

- Accurate measurements of position and direction distributions necessary for identifying quantum states
- Setting up different experiments for measuring position and direction can be costly/impractical

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

- $\blacktriangleright \ |u(x)|^2$ position distribution, $|\hat{u}(\xi)|^2 {\rm direction}$ distribution
- Eugene Wigner: An experimentally accessible joint distribution $P_u(x,\xi)$

$$\int P_u(x,\xi) dx = |\hat{u}(\xi)|^2, \quad \int P_u(x,\xi) d\xi = |u(x)|^2$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $P_u(x,\xi)$ usually not a true joint distibution because of negative regions

Kodi Husimi: Introduce nonnegative distribution H_u by smoothing P_u

$$H_u = P_u * G(z), \quad G(z) = e^{-|z|^2}$$

イロト イポト イヨト

э

For wavefunction u, Husimi Distribution H_u

$$\int H_u(x,\xi)dx \neq |\hat{u}(\xi)|^2, \quad \int H_u(x,\xi)d\xi \neq |u(x)|^2$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Still experimentally accessible, "nice" mathematical properties for studying regions where |u|² = 0

Mathematical definitions of these joint distributions rely on symmetries of flat space NOT present on a general surface

My work - an overview

For a surface \boldsymbol{S} and Laplace eigenfunctions

$$\Delta_S \varphi_\lambda = \lambda \varphi_\lambda$$

Project 1

▶ Introducing a direct analogue of smoothed joint position and direction distributions of φ_{λ} and an approximate formula for their averages

Project 2

• Quantifying their rate of growth of $\varphi_{\lambda}(x)$ as $\lambda \to \infty$ and what this tells us about S.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Constructing a complex phase space on a surface

Recipe for joint position direction distributions of eigenfunctions φ_λ on a surface S

- Construct a position and direction space for S using complex numbers.
- Complex numbers allows "continuation" of Laplace eigenfunctions from S to constructed position/direction space.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Will be done for a circle, but the construction for any shape is similar.

Constructing a complex phase space on a surface

We start with a circle parameterized counterclockwise, and simply add an imaginary component $i \boldsymbol{\tau}$

Constructing a complex phase space on a surface

 $r(\theta+i\tau)=|\tau|$ is a radius function describing how far into the cylinder we go.

Phase space distribution of eigenfunctions

"Continue" Laplace eigenfunctions φ_{λ} to position/direction functions.

Husimi Distributions on a Circle

For a circle

$$e^{ik\theta} \to e^{ik(\theta+i\tau)} = e^{-k\tau}e^{ik\theta}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Phase space distribution of eigenfunctions

"Continue" Laplace eigenfunctions φ_{λ} to position/direction functions.

Husimi Distributions on a general surface

On ANY surface we analytically continue φ_{λ} in the same way

 $\varphi_{\lambda}(x) \to \varphi_{H,\lambda}(x+iy)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Phase space distribution of eigenfunctions

Cross section of position/direction distribution for a sphere eigenfunction

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A result on Husimi Distributions

For $\varphi_{\lambda,H}$ a position/direction distribution of an eigenfunction

- Arbitrary $\varphi_{\lambda,H}$ intractable
- ► We average them instead

$$\frac{1}{\#\{\lambda_j < \lambda\}} \sum_{\lambda_j < \lambda} \varphi_{\lambda_j, H}(u) \overline{\varphi}_{\lambda_j, H}(v)$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

These are overlaps, note when u = v we get $|\varphi_{\lambda_j,H}(u)|^2$

A result on Husimi Distributions

Chang-R. '21: Scaling asymptotics

For u,v within $\sqrt{\lambda}$ and position/direction eigenfunction distributions $\varphi_{\lambda,H}$

$$\frac{1}{\#\{\lambda_j<\lambda\}}\sum_{\lambda_j<\lambda}\varphi_{\lambda_j,H}(u)\overline{\varphi}_{\lambda_j,H}(v) = C \cdot e^{\left(-\frac{\|u\|^2}{2} - \frac{\|v\|^2}{2} + v \cdot \overline{u}\right)}$$

 $+ \ \text{increasingly negligible terms} \\$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Gaussian term permeates similar calculations in flat space

End of Project 1

Before we move to an application of project 1 are there questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Project 2 - Concentration of Husimi Distributions

- When do eigenfunctions peak, and why?
- How does this peaking relate to the geometry of the surface?

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Eigenfunction peaking

Given a point x on a surface, how fast does eigenfunction φ_λ(x) grow as a function of eigenvalue λ

 $|\varphi_{\lambda}(x)| \leq f(\lambda)$, What is f?

 Point, direction on surface traces out a straight line trajectory (called a geodesic)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

1 (1) (1) (1) (1) (1) (1)

Two important types of geodesics both found on sphere

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Periodic Geodesics
- Stable Geodesics

Periodic geodesics loop back to where they started from

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Every geodesic starting at the north pole is periodic

Stable geodesics don't change much when perturbed

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Slight perturbations of a great circle remains close

Lars Hormander- Eigenfunction Upper Bounds

For eigenfunction φ_{λ} on a surface of dimension n

$$\sup_{x} |\varphi_{\lambda}(x)| \le C\lambda^{\frac{n-1}{2}}$$

Equality occurs for spherical eigenfunctions peaking at points with many periodic geodesics!

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

Chris Sogge - Eigenfunction Moment Upper Bounds

For eigenfunctions φ_{λ} , constant c_n depending on dimension n of surface

$$\left(\int_{S}|arphi_{\lambda}(x)|^{q}dx
ight)^{rac{1}{q}}\leq egin{cases} C\lambda^{rac{n-1}{2}(rac{1}{2}-rac{1}{q})},&2\leq q\leq c_{n}\ C\lambda^{n(rac{1}{2}-rac{1}{q})-rac{1}{2}},&c_{n}\leq q \end{cases}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▶ $q = \infty$: Largest value at a point.

▶ q small: Average value over more diffuse region

$$\left(\int_{S} |\varphi_{\lambda}(x)|^{q} dx\right)^{\frac{1}{q}} \leq \begin{cases} C\lambda^{\frac{n-1}{2}(\frac{1}{2} - \frac{1}{q})}, & 2 \leq q \leq c_{n} \\ C\lambda^{n(\frac{1}{2} - \frac{1}{q}) - \frac{1}{2}}, & c_{n} \leq q \end{cases}$$

Small moment regime saturated by eigenfunctions localized to stable equator

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

$$\left(\int_{S} |\varphi_{\lambda}(x)|^{q} dx\right)^{\frac{1}{q}} \leq \begin{cases} C\lambda^{\frac{n-1}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}, & 2 \leq q \leq c_{n} \\ C\lambda^{n\left(\frac{1}{2}-\frac{1}{q}\right)-\frac{1}{2}}, & c_{n} \leq q \end{cases}$$

Large moment regime saturated by eigenfunctions localized to points with many periodic geodesics

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

My Result - Peaking of norms of Husimi Distributions

Chang-R '22: Peaking of Phase Space Norms

For $\varphi_{H,\lambda}$ position/direction distributions of eigenfunctions on a surface of dimension n

$$\left(\int |\varphi_{H,\lambda}(x)|^q dx\right)^{\frac{1}{q}} \le C\lambda^{(n-1)(\frac{1}{2}-\frac{1}{q})} \qquad (2 \le q \le \infty).$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ● ◆○ ◆

My Result - Peaking of norms of Husimi Distributions

Chang-R '22: Peaking of Phase Space Norms

For $\varphi_{H,\lambda}$ position/direction distributions of eigenfunctions on a surface of dimension n

$$\left(\int |\varphi_{H,\lambda}(x)|^q dx\right)^{\frac{1}{q}} \le C\lambda^{(n-1)(\frac{1}{2} - \frac{1}{q})} \qquad (2 \le q \le \infty).$$

Saturated by position/direction distributions of of eigenfunctions localized to stable geodesics!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Thank you for coming!

・ロト ・ 日 ・ モ ト ・ モ ・ うへの