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Overview of of the talk

▶ What are eigenfunctions and how do they help model physical
processes on surfaces?

▶ What did I contribute to our understanding of eigenfunctions?



The second derivative operator

Second derivative operator

Operator d2

dx2 takes function f to second derivative(
d2

dx2
f

)
(x) = f ′′(x)



The second derivative operator

Second derivative operator

Operator d2

dx2 takes function f to second derivative(
d2

dx2
f

)
(x) = f ′′(x)

f ′′(x) says to what ”degree” x is a minima



The second derivative operator
d2

dx2 is ubiquitous in physical modeling

Heat Diffusion

u(x, t) is the temperature at x at time t and evolves according to

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)



The second derivative operator
d2

dx2 is ubiquitous in physical modeling

Wave Propagation

u(x, t) is the height of a wave at x at time t and evolves according to

∂2

∂t2
u(x, t) =

∂2

∂x2
u(x, t)



The second derivative operator

Focus on probability distribution of location of quantum particle

Quantum Particle

|u(x, t)|2 is the probability distribution of locating a particle at position x
and time t which evolves according to

i
∂

∂t
u(x, t) = − ∂2

∂x2
u(x, t)



Eigenvalues, eigenvectors, and eigenfunctions

▶ Eigenfunctions generalize eigenvectors. Help solve differential
equations.



Eigenvalues, eigenvectors, and eigenfunctions

Eigenvectors of matrices

M is an n× n matrix, v is an n× 1 vector and λ is a real number

Mv = λv

▶ v is called a eigenvector with eigenvalue λ



Eigenvalues, eigenvectors, and eigenfunctions

Eigenvectors of matrices

M is an n× n matrix, v is an n× 1 vector and λ is a real number

Mv = λv

▶ v is called a eigenvector with eigenvalue λ

Eigenvectors identify ”principal directions”



Eigenvalues, eigenvectors, and eigenfunctions

Eigenfunctions of d2

dx2

We replace M with d2

dx2 and v with a function φλ(x)

d2

dx2
φλ = λφλ

▶ φλ is called an eigenfunction with eigenvalue λ



Eigenvalues, eigenvectors, and eigenfunctions

(
− d2

d2x

)
φλ = λφλ, φλ = ei

√
λx,

√
λ = frequency



Eigenfunctions on surfaces

Goal: Modeling physical phenomena on surfaces more
complicated than a line



Eigenfunctions on surfaces

▶ Given a surface S, the Laplacian denoted by ∆S plays the role of
d2

dx2 .

The Laplacian

(∆Sf)(x) describes the degree to which x is a minima of f on the
surface S



Eigenfunctions on surfaces

Eigenfunctions of ∆S

Given a surface S, we study eigenfunctions of ∆S

∆Sφλ = λφλ

▶ φλ is called a Laplace eigenfunction with eigenvalue λ



Eigenfunctions on surfaces

Eigenfunctions of ∆S

Given a surface S, we study eigenfunctions of ∆S

∆Sφλ = λφλ

▶ φλ is called a Laplace eigenfunction with eigenvalue λ

▶ N.B. On a surface S, λ are discrete!



Eigenfunctions on surfaces

Laplace eigenfunctions on the circle S1 are sinusoids

∆S1φn2 = n2φn2 , φn2(θ) = einθ



Eigenfunctions on surfaces

Visualizations of Laplace eigenfunctions on the sphere, S2

∆S2φλ = λφλ

Red = Positive, Blue = Negative, White = Negligible(Zero)



How Laplace Eigenfunctions help model quantum particles on
surfaces

Theorem

Any function f , on the surface S is a superposition of Laplace
eigenfunctions.

f(x) =

∞∑
i=1

ciφλi(x)



How Laplace Eigenfunctions help model quantum particles on
surfaces

Quantum Particle on S

|u(x, t)|2 probability distribution of locating a particle at position x and
time t. Its wavefunction u(x, t) evolves by

i
∂

∂t
u(x, t) = −∆Su(x, t)



How Laplace Eigenfunctions help model quantum particles on
surfaces

Quantum Particle on S

|u(x, t)|2 probability distribution of locating a particle at position x and
time t. Its wavefunction u(x, t) evolves by

i
∂

∂t
u(x, t) = −∆Su(x, t)

Wavefunction u(x, t) written as sum of Laplace eigenfunctions φλ

u(x, t) =

∞∑
i=1

cie
iλitφλi



Probability Distributions of position and direction

▶ u a wavefunction. |u(x)|2 a probability distribution of location.



Probability Distributions of position and direction

▶ u a wavefunction. |u(x)|2 a probability distribution of location.

▶ When S is a line we take u’s Fourier Transform

û(ξ) =

∫
R

e−ix·ξu(x)dx



Probability Distributions of position and direction

▶ u a wavefunction. |u(x)|2 a probability distribution of location.

▶ When S is a line we take u’s Fourier Transform

û(ξ) =

∫
R

e−ix·ξu(x)dx

▶ |û(ξ)|2 a probability distribution of direction.



Probability Distributions of position and direction

▶ Accurate measurements of position and direction distributions
necessary for identifying quantum states

▶ Setting up different experiments for measuring position and direction
can be costly/impractical



Joint Distributions of position and momentum

▶ |u(x)|2 position distribution, |û(ξ)|2direction distribution

▶ Eugene Wigner: An experimentally accessible joint distribution
Pu(x, ξ) ∫

Pu(x, ξ)dx = |û(ξ)|2,
∫

Pu(x, ξ)dξ = |u(x)|2



Joint Distributions of position and momentum

Pu(x, ξ) usually not a true joint distibution because of negative regions



Joint Distributions of position and momentum

Kodi Husimi: Introduce nonnegative distribution Hu by smoothing Pu

Hu = Pu ∗G(z), G(z) = e−|z|2



Joint Distributions of position and momentum

▶ For wavefunction u, Husimi Distribution Hu∫
Hu(x, ξ)dx ̸= |û(ξ)|2,

∫
Hu(x, ξ)dξ ̸= |u(x)|2

▶ Still experimentally accessible, ”nice” mathematical properties for
studying regions where |u|2 = 0



Joint Distributions of position and momentum

Mathematical definitions of these joint distributions rely on
symmetries of flat space NOT present on a general surface



My work - an overview

For a surface S and Laplace eigenfunctions

∆Sφλ = λφλ

Project 1

▶ Introducing a direct analogue of smoothed joint position and
direction distributions of φλ and an approximate formula for their
averages

Project 2

▶ Quantifying their rate of growth of φλ(x) as λ → ∞ and what this
tells us about S.



Constructing a complex phase space on a surface

Recipe for joint position direction distributions of eigenfunctions φλ on a
surface S

▶ Construct a position and direction space for S using complex
numbers.

▶ Complex numbers allows ”continuation” of Laplace eigenfunctions
from S to constructed position/direction space.

Will be done for a circle, but the construction for any shape is similar.



Constructing a complex phase space on a surface

We start with a circle parameterized counterclockwise, and simply add an
imaginary component iτ



Constructing a complex phase space on a surface

r(θ + iτ) = |τ | is a radius function describing how far into the cylinder
we go.



Phase space distribution of eigenfunctions

”Continue” Laplace eigenfunctions φλ to position/direction functions.

Husimi Distributions on a Circle

For a circle
eikθ → eik(θ+iτ) = e−kτeikθ



Phase space distribution of eigenfunctions

”Continue” Laplace eigenfunctions φλ to position/direction functions.

Husimi Distributions on a general surface

On ANY surface we analytically continue φλ in the same way

φλ(x) → φH,λ(x+ iy)



Phase space distribution of eigenfunctions

Cross section of position/direction distribution for a sphere eigenfunction



A result on Husimi Distributions

For φλ,H a position/direction distribution of an eigenfunction

▶ Arbitrary φλ,H intractable

▶ We average them instead
1

#{λj < λ}
∑
λj<λ

φλj ,H(u)φλj ,H(v)

These are overlaps, note when u = v we get |φλj ,H(u)|2



A result on Husimi Distributions

Chang–R. ’21: Scaling asymptotics

For u,v within
√
λ and position/direction eigenfunction distributions

φλ,H

1

#{λj < λ}
∑
λj<λ

φλj ,H(u)φλj ,H(v) = C · e

(
− |u|2

2 − |v|2
2 +v·u

)

+ increasingly negligible terms

Gaussian term permeates similar calculations in flat space



End of Project 1

Before we move to an application of project 1 are there
questions?



Project 2 - Concentration of Husimi Distributions

▶ When do eigenfunctions peak, and why?

▶ How does this peaking relate to the geometry of the
surface?



Eigenfunction peaking

▶ Given a point x on a surface, how fast does eigenfunction φλ(x)
grow as a function of eigenvalue λ

|φλ(x)| ≤ f(λ), What is f?



Straight Line Trajectories (geodesics)

▶ Point,direction on surface traces out a straight line trajectory (called
a geodesic)



Straight Line Trajectories (geodesics)

Two important types of geodesics both found on sphere

▶ Periodic Geodesics

▶ Stable Geodesics



Straight Line Trajectories (geodesics)

Periodic geodesics loop back to where they started from

Every geodesic starting at the north pole is periodic



Straight Line Trajectories (geodesics)

Stable geodesics don’t change much when perturbed

Slight perturbations of a great circle remains close



Peaking of eigenfunctions

Lars Hormander- Eigenfunction Upper Bounds

For eigenfunction φλ on a surface of dimension n

sup
x

|φλ(x)| ≤ Cλ
n−1
2

Equality occurs for spherical eigenfunctions peaking at points with many
periodic geodesics!



Peaking of eigenfunctions

Chris Sogge - Eigenfunction Moment Upper Bounds

For eigenfunctions φλ, constant cn depending on dimension n of surface(∫
S

|φλ(x)|qdx
) 1

q

≤

{
Cλ

n−1
2 ( 1

2−
1
q ), 2 ≤ q ≤ cn

Cλn( 1
2−

1
q )−

1
2 , cn ≤ q

▶ q = ∞: Largest value at a point.

▶ q small: Average value over more diffuse region



Peaking of eigenfunctions

(∫
S

|φλ(x)|qdx
) 1

q

≤

{
Cλ

n−1
2 ( 1

2−
1
q ), 2 ≤ q ≤ cn

Cλn( 1
2−

1
q )−

1
2 , cn ≤ q

Small moment regime saturated by eigenfunctions localized to stable
equator



Peaking of eigenfunctions

(∫
S

|φλ(x)|qdx
) 1

q

≤

{
Cλ

n−1
2 ( 1

2−
1
q ), 2 ≤ q ≤ cn

Cλn( 1
2−

1
q )−

1
2 , cn ≤ q

Large moment regime saturated by eigenfunctions localized to points
with many periodic geodesics



My Result - Peaking of norms of Husimi Distributions

Chang-R ’22: Peaking of Phase Space Norms

For φH,λ position/direction distributions of eigenfunctions on a surface of
dimension n(∫

|φH,λ(x)|qdx
) 1

q

≤ Cλ(n−1)( 1
2−

1
q ) (2 ≤ q ≤ ∞).



My Result - Peaking of norms of Husimi Distributions

Chang-R ’22: Peaking of Phase Space Norms

For φH,λ position/direction distributions of eigenfunctions on a surface of
dimension n(∫

|φH,λ(x)|qdx
) 1

q

≤ Cλ(n−1)( 1
2−

1
q ) (2 ≤ q ≤ ∞).

Saturated by position/direction distributions of of eigenfunctions
localized to stable geodesics!



Thank you for coming!


